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Abstract

Diffusion tensor imaging (DTI) tractography provides noninvasive measures of structural cortico-cortical connectivity of the
brain. However, the agreement between DTI-tractography-based measures and histological ‘ground truth’ has not been
quantified. In this study, we reconstructed the 3D density distribution maps (DDM) of fibers labeled with an anatomical
tracer, biotinylated dextran amine (BDA), as well as DTI tractography-derived streamlines connecting the primary motor
(M1) cortex to other cortical regions in the squirrel monkey brain. We evaluated the agreement in M1-cortical connectivity
between the fibers labeled in the brain tissue and DTI streamlines on a regional and voxel-by-voxel basis. We found that DTI
tractography is capable of providing inter-regional connectivity comparable to the neuroanatomical connectivity, but is less
reliable measuring voxel-to-voxel variations within regions.
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Introduction

Diffusion Tensor Imaging (DTI) is a noninvasive method to

characterize the microstructure of biological tissue [1]. It is based

on measurements of the mean squared displacement of water

molecules along predetermined directions, estimated from the

signal decay in a pulsed gradient spin echo acquisition [2]. Water

diffusion is anisotropic in many tissues, especially in fibers of tightly

packed, parallel axons [3] in brain white matter. Hence, DTI

serves as a sensitive probe of axonal fiber orientation [4]. Based on

these concepts, white matter pathways can be reconstructed by

tracking the inferred axonal orientations step by step (with voxel or

subvoxel step size) from seed points. Deterministic tracking

algorithms [5–9] construct a unique path from each seed point

whereas probabilistic algorithms [10–14] generate multiple

possible paths from each seed point. Both families of tractography

algorithms have become valuable research tools for the in vivo

study of neuronal tissue morphology, pathway location, and other

properties which directly relate to neuropsychiatric/neurologic

disorders [15], brain organization and development [16,17].

Among many potential applications of DTI tractography,

mapping anatomical connectivity [18] has attracted the attention

of many neuroscientists, neurologists, and psychiatrists, since

knowing the network structure within and between brain regions is

a fundamental prerequisite for understanding mechanisms under-

lying brain functions and dysfunctions. Early experimental

methods to reveal connectivity employed gross dissection [19]

and neural degeneration procedures [20–22]. More recent

experiments exploit neural tracers, which capitalize on cytoplas-

mic flow and the axoplasmic transport system [23]. A variety of

tracers, such as horseradish peroxidase (HRP), lectins, toxins and

their conjugates, fluorescent dyes, dextrans and viruses (for review

see [24]), have been used in countless investigations that have

contributed valuable descriptions of connectivity in the mamma-

lian brain. These methods, however, are highly invasive and

require fixed, processed tissue for data analysis, preventing their

use for in vivo connectivity mapping. The recently introduced

manganese technique offers an opportunity to study neuronal

connectivity in vivo by means of magnetic resonance imaging

(MRI) [25], but the technique has several drawbacks that can

reduce its applicability, the most important being the potential

toxicity of the Mn2+ ions.

DTI tractography overcomes the problem of invasiveness, but

whether or to what extent it reveals true anatomical connectivity is

unclear. A number of well-examined factors, e.g., signal to noise

ratio [26] and partial volume effects [27], may degrade the fidelity

with which tractography can represent anatomical connectivity

[28]. Hence, the agreement between tractography-derived and

anatomical connectivity needs to be evaluated quantitatively.

Previous in vivo or in vitro validation studies [29–31] mainly
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compare tractography-derived pathways with the ‘ground truth’

white matter fiber bundles revealed using surgical dissection,

neural tracer tracking or an MR-visible tracer. They demonstrated

general agreement in a number of specific bundles between

tractography-derived pathways and the ‘ground truth’. Besides the

morphology of white matter pathways, there is increasing interest

in measuring cortico-cortical connectivity using DTI tractography

[32]. However, to the best of our knowledge, such measurements

have not yet been rigorously validated.

This paper aims to assess the accuracy of DTI tractography as a

measure of cortico-cortical connectivity. For this purpose, we

studied neuroanatomical and DTI tractography-derived cortico-

cortical connections in an animal model and quantitatively

evaluated the histology-tractography agreement based on regional

and voxelwise analysis.

Methods

Tracer Injection
The experiment was carried out on a New World squirrel

monkey. The brain of this species shares many features of

functional organization and microstructural complexity with

humans, although the cortical surface is less gyrated. The motor

cortex, for example, is completely exposed on the brain surface, so

it is easily accessible for electrical microstimulation and injection of

tracers. Other advantages of New World monkeys are that the

cortical connections of the primary motor cortex (M1) are well

known from previous studies [33] and their smaller brains reduce

the time of histological processing and anatomical data analysis.

Under general anesthesia using aseptic techniques, a bidirec-

tional tracer, biotinylated dextran amine (BDA; Molecular Probes

Inc., Eugene, OR) was injected (as a 10% solution in phosphate

buffer) into left hemisphere M1. Pressure injections of BDA were

carried out using a 2 ul Hamilton syringe. Eight injections (1 ml/

site; indicated by the black squares in Fig. 1) were made to cover a

large M1 region representing the forearm and identified by

intracortical microstimulation (see the stimulation sites labeled ‘Fa’

in Fig. 1). After each injection, the needle was left in the brain for

5–10 minutes and then retracted stepwise to avoid leakage of the

tracer along the needle track. Surgical, microstimulation and

injection procedures have been described in detail elsewhere [33].

After surgery, the monkey was allowed to recover from the

procedure, giving the tracer sufficient time to be transported along

axons to all regions connected to M1.

All animal procedures were approved by the Vanderbilt

University Animal Care and Use Committee, and followed

guidelines of National Institutes of Health for the care and use

of laboratory animals. The monkey was housed in adjoining

individual primate cages allowing social interactions with other

monkeys and received extensive environmental enrichment such

as play objects that are changed for variability, novel food objects

and foraging devices. Normal food, treats and fruit were provided

to the animal by trained staff. Analgesics were given following the

procedure and in response to any evidence of pain (behavioral

abnormality, loss of appetite, tissue edema, or muscle spasms). The

monkey was closely monitored in the week following the surgical

procedures.

Ex vivo MRI Data Acquisition
One week after surgery, the monkey was given a lethal dose of

barbiturate, and perfused through the heart. All blood was rinsed

out with physiological saline (0.9% NaCl) followed by fixative (4%

paraformaldehyde). The brain was removed from the skull and

stored in buffered saline overnight. The next day, the brain was

scanned on a 9.4 Tesla Varian scanner (Varian Inc., Palo Alto,

CA). First, T2-weighted structural images were acquired by

running a standard gradient echo multi-slice (GEMS) sequence

with full brain coverage (TR = 963 ms, TE = 4 ms, flip angle = 20̊,

slice gap = 0 mm, voxel size = 30063006300 mm3, data ma-

trix = 12861286192, SNR<50). Then diffusion weighted imaging

was performed using a pulsed gradient spin echo (PGSE, [2])

multishot spinwarp imaging sequence with the same FOV as the

structural images (TR = 5.2s, TE = 26 ms, number of diffusion

gradient directions = 31, b= 0, 1200s/mm2, voxel

size = 30063006300 mm3, data matrix = 12861286192, number

of acquisitions = 10, SNR<25, scanning time<50 hr). The b value

used in this experiment was lower than is optimal for diffusion

studies in fixed tissue [34], due to hardware limitations. A low b

value decreases the available diffusion contrast-to-noise ratio

(CNR) in the image data, which has the same effect as higher

image noise. To compensate for this shortcoming, we extended the

scan time to 50 hours, which yielded a CNR comparable to in vivo

human studies (equivalent to an in vivo study with mean

diffusivity = 0.761023 mm2/s and SNR<20).

Block/micrograph Data Acquisition
Following MRI scanning, and before sectioning, the entire brain

was placed in 30% sucrose for cryoprotection. Two days later the

brain was cut serially on a microtome in a coronal plane to

produce 50 mm thick frozen sections. All sections were collected in

phosphate buffer, but prior to cutting every third section (i.e., at

150 mm intervals), the frozen tissue block was photographed using

a Canon digital camera (image resolution = 50 mm/pixel, image

size = 333064000pixels, number of images = 286), mounted above

the microtome to facilitate intermodality image registration (see

section 2.4) [35].

Sections were divided into six series. Every sixth thin section was

processed for BDA histochemistry [36], producing a series of 74

sections covering all regions connected to M1. These sections were

photographed under 0.56 magnification using a Nikon

DXM1200F digital camera mounted on a Nikon E-800 micro-

scope (image resolution = 7 mm/pixel, image size = 384063072

pixels). More than one photograph was needed to cover the entire

section. Those component photographs were merged into a

panoramic micrograph using Adobe Photoshop CS3 (San Jose,

CA) and the background of each panorama was extended to a net

image size of 666066660 pixels. The resulting stack of images

defined a ‘‘standard micrograph space’’ which is the target space

of all higher resolution microscopic data. Another series of sections

was stained for Nissl substance to identify the cytoarchitectonic

borders of M1 and other cortical regions connected to M1. Four

series of remaining sections were used for other purposes.

Micrograph-space to DTI-space Registration
The standard micrograph space was registered to the DTI

image data using a multi-step procedure. First, every BDA-labeled

section was down-sampled (to 2566256 pixels) and registered to

the down-sampled photograph (2566256 pixels) of the corre-

sponding tissue block using a 2D affine transformation followed by

a 2D non-rigid transformation, semi-automatically calculated via

the Thin-Plate Spline algorithm [37]. Next, all the down-sampled

block photographs were assembled into a block volume and all the

non-diffusion weighted MRI images were similarly stacked into a

DTI volume. Then the block volume was registered to the DTI

volume using a 3D affine transformation followed by a 3D non-

rigid transformation automatically calculated via the Adaptive

Bases Algorithm [38]. The multi-step registration described here

was very similar to the registration procedure validated in an

Validation of DTI-Based Measures of Connectivity
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earlier study [39], which showed that the accuracy of the overall

registration was approximately one MRI voxel (0.3 mm). The

deformation fields produced by all the above registration steps

were saved in order to transfer other data from the micrograph

space (i.e., higher resolution microscopic data, described in section

2.5) into DTI space.

Fiber and Density Distribution Map (DDM)
Reconstruction

Our ultimate goal in this part of the study was to reconstruct

histological and DTI-tractography-based DDMs in DTI space and

render them on the same white-gray matter (WGM) interface.

Prior to calculating DDMs, we reconstructed the 3D WGM

interface in DTI space: the T2w image volume was rigidly

registered to the DTI volume; white matter was segmented using a

variational level set approach [40] on the aligned T2w images; the

3D outline of white matter was extracted to generate triangle

meshes representing the WGM interface. In addition, the BDA-

injection region and different cortical projection regions were

segmented manually in the standard micrograph space based on

architecture revealed by Nissl- and BDA-labeled sections [33] and

then transferred to DTI space.

To resolve each individual BDA-labeled fiber, 46micrographs

(0.87 mm/pixel) covering the WGM boundary were acquired

using a Nikon D1R1 digital camera mounted on a Nikon

AZ100 M microscope. The BDA-labeled fibers were segmented

by a series of morphological processes: top-hat filtering was

performed to correct uneven illumination, global thresholding was

implemented to extract fibers, and a set of statistical properties

(e.g., area of object and ratio of perimeter to area) of each

extracted object was calculated and used to remove the non-fiber

objects. For each micrograph, points along the WGM boundary

were selected manually and fit to a curve with 6 pixels (,5 mm)

width to represent the histological WGM boundary. Segmented

Figure 1. Functional map of the primary motor cortex (M1) used to guide BDA injections. Cortical sites marked as white dots were
stimulated by micro electrode, which evoked body movements of the anesthetized monkey. Letter(s) above each dot indicate the specific
movement(s) corresponding to this stimulation site. The number below each dot represents the current threshold (in units of mA) needed to evoke
the movement. Thick dashed lines indicate approximate borders of M1, which were identified by the magnitude of threshold (thresholds lower than
approximately 40 mA were used to infer the M1 region). Thin dashed lines indicate approximate borders between M1 body representation areas.
Black squares show the BDA injection sites covering the forearm movement representation area.
doi:10.1371/journal.pone.0075065.g001
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fibers that overlapped the fitted boundary were extracted

automatically. The centroids of the overlapping fibers were rigidly

transferred to the standard micrograph space, slice by slice.

Next, the standard size micrograph (666066660 pixels) was

divided into 2566256 square units and the number of centroids in

each unit area, ni,j (i,j = 1,2,…,256), was determined. These ni,j

values served as the intensity of the 2D DDM. The DDMs were

transferred from micrograph space to block space then to DTI

space using the deformation field associated with the registration

procedure described earlier (see section 2.4). Immediately follow-

ing each spatial transformation step, the Jacobian matrix of the

corresponding deformation field was calculated and then used to

compensate the density change caused by the raw geometric

transformation. Finally, to facilitate visualizing the density

information in 3D, we mapped these gray-matter-distributed

densities onto the 3D WGM interface in DTI space. Thus, ideally,

the value of a certain voxel on the 3D WGM interface in DTI

space represented the number of BDA-labeled fibers whose

centroids were located on the WGM boundary in high resolution

micrograph space.

To identify the locations of BDA-labeled somas in the

micrographic volume, we exhaustively plotted the centers of these

somas and the outline of the brain tissue for each BDA-labeled

section under a 6.36 objective of a Zeiss microscope equipped

with the vector graphing software Igor Pro 2.0 (Wavemetrics, Inc.,

Lake Oswego, OR). Using Canvas 11 (ACD Systems, Victoria,

British Columbia, Canada), each vector graph was converted to a

bitmap image with resolution high enough to resolve any two

adjacent soma markers. The bitmap image was rigidly aligned

with the 0.56 micrograph of the corresponding BDA-labeled

section by matching the outline of the brain tissue and then was

cropped into a standard size image. Next, each labeled soma was

Figure 2. Pipeline for detecting and counting interface-crossing BDA-labeled fibers. Grayscale 46micrograph (B) covering a specific ROI
(iPM in this example), aligned to the corresponding 0.56micrograph (A) in standard micrograph space. (B) shows manually drawn markers (red dots)
used to identify the WGM boundary. (C) shows the fit of the markers to a continuous curve (yellow). (D) shows segmented BDA-labeled fibers (those
with color contours) that touch the WGM boundary along with their numerical index (red numbers beside the fibers).
doi:10.1371/journal.pone.0075065.g002

Figure 3. Maps of color-coded primary diffusion direction (red=Right/Left, green=Anterior/Posterior, and blue=Superior/Inferior)
and scalar FA value (CC-corpus callosum, IC-internal capsule and AC-anterior commissure).
doi:10.1371/journal.pone.0075065.g003
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segmented by simple thresholding and the centroid of the soma

was extracted automatically; the procedures (including gridding,

counting, and calculating, then transferring and compensating the

DDM) were similar to those for processing BDA-labeled fiber

data. Finally, we mapped these gray-matter-distributed densities

onto the 3D WGM interface in DTI space: the density value of

every gray matter voxel was added to the closest voxel located on

the 3D WGM interface. Thus, ideally, the value for each voxel at

the interface was the sum of the number of BDA-labeled somas

located vertically (i.e., normal to the surface) beyond this voxel.

DTIStudio [41] software was used to perform tensor fitting and

fiber tracking (using the FACT algorithm, [6]) over the whole

brain (tensor fitting method: standard linear-fitting; tracking

parameters: start fractional anisotropy, FA = 0.1, stop FA = 0.2

and stop angle = 70̊). Streamlines penetrating both of the following

two ROIs were selected: (i) the BDA-injection region transferred

from the micrograph space and (ii) the WGM interface just

underneath (i). The above deterministic tracking scheme is

referred to as the ‘DS’ scheme below. The DDM for this tracking

method was produced by counting the number of the streamlines

passing through or terminating within the voxels at the WGM

interface. In addition, the streamline terminals distributed within

the cortical regions connected to M1 were also mapped onto the

interface and then counted for each interface voxel to produce a

DTI ‘streamline terminal’ DDM.

Probabilistic fiber tracking was performed with the FMRIB’s

Diffusion Toolbox (FDT) v2.0 from the commonly-used FMRIB’s

Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl). First, the

bedpostx command was run to calculate the distributions of

diffusion parameters at each brain voxel using the Markov Chain

Monte Carlo sampling method [10] with automatic relevance

determination (ARD) weight assigned to 1 (default) and 0.5,

respectively. The probtrackx command was used to generate

probabilistic streamlines (using the following parameters: sample

number = 10000, curvature threshold = 0.2, modified Euler

streamlining = on, step length = 0.1 mm and distance correctio-

n = on). The BDA-injection region was used as the seed mask, the

WGM interface underneath the injection region as the waypoint

mask and the gray matter mask (excluding the injection region) as

the termination mask. These probabilistic tracking schemes are

referred to as ‘FSL1’ (ARD weight = 1) and ‘FSL2’ (ARD

weight = 0.5), respectively. The voxel value in the resulting dataset

represents the number of streamline samples passing through this

voxel times the expected length of these samples. The probabi-

listic-tractography-derived DDM was generated by keeping the

values of those voxels located at the WGM interface and setting

the remaining voxels to zero. Again, the DDMs were rendered on

the 3D WGM interface in DTI space.

Quantitative Analysis
The number of DTI-tractography-derived streamlines has been

proposed as a measure of cortico-cortical connectivity [18], based

on the hypothesis that the number of streamlines is proportional to

the number of axons connecting cortical regions. To test this

hypothesis for inter-regional connectivity, the numbers of BDA-

labeled fibers (NB) passing into cortical ROIs and the numbers of

DTI streamlines (ND) projecting to the same ROIs were quantified.

These data were fit to a linear model:

ND~azbNBze, ð1Þ

where a and b are, respectively, the estimated intercept and slope

Figure 4. Relationship between tractography-histology variables as well as histology-histology variables. (A–C) show streamline vs.
BDA-labeled fiber data; (D) shows streamline terminals vs. soma data; and (E) shows BDA-labeled soma vs. fiber data. DS (A and D), FSL1 (B) and FSL2
(C) schemes were used to obtain tractography-derived streamlines when dw is 0, 0.3 and 0.6 mm. Proportional relationships were fit based on least
squares regression. The correlation coefficients (with corresponding p values) of the regressions are listed in Table 1.
doi:10.1371/journal.pone.0075065.g004

Figure 5. Dorsal view of the inter-regional connectivity backbones. (A), (B) and (C) show the BDA-labeled fiber, DS and FSL2 derived
(dw=0.6 mm) connectivity backbones, respectively. Green and blue nodes indicate the center of mass of the injection and individual projection
regions, respectively. The radius of each node is scaled by the square root of the volumes of the corresponding region. The thickness of each edge
represents the logarithmic connection strength and the color of the edge is coded according to connection weight (strength divided by volume of
the projection region).
doi:10.1371/journal.pone.0075065.g005
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of the regression line, and e is the error term. If a= 0 lay within the

95% of confidence interval of the intercept, then the data were fit

to a second tier linear model with intercept equal to zero:

ND~b0NBze0: ð2Þ

The Pearson’s correlation coefficient of the fit, r, was calculated to

indicate the degree of correlation between tractography and

histology fiber data.

To verify the hypothesis in the case of intra-regional connec-

tivity, we calculated the Pearson’s correlation coefficient, rp,

between tractography and histology fiber DDMs within each

cortical projection region on a voxel-by-voxel basis:

rp~
Xn

i~1
(Bi{B)(Di{D)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1
(Bi{B)2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1
(Di{D)2

q� �
,

ð3Þ

where Bi and Di are, respectively, the numbers of BDA-labeled

fibers and DTI streamlines distributed in the ith voxel located at

the WGM interface directly underneath this projection region, n is

the total number of these voxels, and the bar represents the mean.

The original seed region covered the gray matter in the

injection region, but it was found that DTI tractography was more

effective when the seed region was intentionally extended one or

two voxels into the white matter under the WGM interface (see

below). To examine the effect of extending the depth, dw, of the

seed region into the white matter on quantitative metrics, we

calculated all correlations using seed masks with dw = 0, 1 and 2

voxels ( = 0, 0.3 and 0.6 mm).

In addition, since obtaining the DDM of BDA-labeled somas

was less time-consuming, we studied the feasibility of using soma

number to represent histological connectivity. We therefore

calculated the relationship between numbers of somas and fibers

across all projection regions. We also calculated the association

between numbers of somas and numbers of DS streamline-

terminals across all the projection regions.

Fiber Orientation Comparison
To elucidate the reasons for discrepancy between tractographic

and histological connectivity, we compared the tensor orientation

with BDA-labeled fiber orientation in the high resolution

micrograph space. Based on a multi-step registration procedure

[39], the locations of diffusion tensors were transferred from the

DTI space into the high resolution histological space and the

tensor orientations were corrected based on the preservation of

principal direction algorithm [42].

Results

M1-connected Cortices
BDA injections in the forearm representation area of the

primary motor cortex reveal somatotopically distributed connec-

tions with the ipsi2/contralateral supplementary motor areas

(iSMA/cSMA); ipsi2/contralateral anterior cingulate cortex

(iAC/cAC); ipsi2/contralateral premotor cortex (iPM/cPM);

ipsilateral M1 excluding the injection region (iM1ex); contralateral

M1 (cM1); ipsi2/contralateral anterior parietal cortex (iPA/cPA);

ipsi2/contralateral posterior parietal cortex (iPP/cPP); anterior

part of upper bank of ipsilateral lateral sulcus –a combination of

parietal ventral and rostral (iPVR) areas; posterior part of upper

bank of ipsi2/contralateral lateral sulcus cortex–secondary

somatosensory cortex (iS2/cS2). Labeling of ipsi2/contralateral

prefrontal cortex (iPF/cPF) and contralateral PVR (cPVR) were

not observed in this case. The above regions served as our regions

of interest (ROIs). The borders of these ROIs were identified

based on their cytoarchitectural features seen in Nissl preparations

[43].

Detection and Counting of Cross-interface BDA-labeled
Fibers

Figure 2 illustrates the pipeline for semi-automatic detection of

cross-interface BDA-labeled fibers in the high resolution micro-

graph space. The WGM boundary (yellow curve shown in Fig. 2C)

was estimated by fitting a series of manually-placed markers (red

dots in Fig. 2B) on 46 micrographs covering a specific ROI.

Interface-crossing fibers (fibers with color contours shown in

Fig. 2D) were detected automatically by performing an ‘‘AND’’

operation on the fiber and boundary binary masks. Locations of

the interface-crossing fibers were defined by the centroids of these

fibers, and the number of cross-interface fibers was counted (red

numbers in Fig. 2D). It was verified that shifting the WGM matter

boundary towards white matter or gray matter by 50 pixels

(,44 mm) did not significantly change the number of interface-

crossing fibers. The deviation of semi-automated counting from

manual counting as the ‘‘gold standard’’ was also studied. Four to

five sections for each ROI were randomly drawn for verification.

The deviations for all the ROIs were in the range of 3%–5%.

Tensor Fitting Results
The DWI data were fit to single-tensors using DTIStudio. The

primary diffusion direction and FA were calculated in each voxel.

Figure 3 shows a color-coded map of primary diffusion direction

and the FA scalar map of the same coronal slice.

Correlation of Inter-ROI Connectivity Strength
To test the hypothesis that the number of streamlines, ND,

connecting two cortical regions is proportional to the number of

anatomical fibers, NB, connecting those regions, we identified the

number pair for connections between M1 and each ROI and

plotted them in Fig. 4 as well as displayed them as connectivity

backbones, shown in Fig. 5. The points lying on the horizontal axis

(ND = 0) and vertical axis (NB = 0) in Fig. 4 indicate false negative

and false positive connections, respectively. Approximately 75–

98% of streamlines reached true positive ROIs for our predefined

regions. By performing linear regression based on model (1) and

calculating the 95% confidence interval for the intercept, we found

that all nine confidence intervals included the origin. Therefore,

we fit to the constrained linear model (2) to generate the regression

lines in Fig. 4. The Pearson correlation coefficient r and

corresponding p value for each case are shown in Table 1.

Because the data span many orders of magnitude, the Pearson

correlation coefficient (and corresponding p) is dominated by the

largest values. For this reason, we also calculated the Spearman

rank correlation coefficient, rs, and corresponding p value, which

depends only on the relative rank of connection strengths

measured by the two methods. The values of rs in Table 1 are

quite low and do not reach statistical significance. To focus on the

strongest connections, we chose the ten regions with the highest

number of BDA-labeled fibers (i.e., number of BDA fibers.100)

and calculated the Spearman rank correlation coefficient, (rs)10,

and corresponding p value for this subset of the data.

Comparison across the three tractography schemes with dw = 0

or 0.3 mm (distance of zero or one voxel) indicates that the linear

Validation of DTI-Based Measures of Connectivity
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correlations for the two probabilistic schemes are significantly

lower than those of the deterministic scheme. When dw = 0.6 mm,

however, the linear correlations for these three schemes are quite

similar and deterministic tractography gave no false negative

results. In addition, under any fixed dw, the FSL1 and FSL2

schemes have similar r value, but FSL2 has a smaller number of

false negative ROIs than FSL1 does.

The influence of dw on the three tractography schemes, shown

in the rows of Fig. 4A–C and first nine rows of Table 1 are

different. As dw increases, the number of false negative ROIs

decreases except for the FSL2 scheme. For the FSL1 and FSL2

schemes, as dw increases, the r value increases significantly. For the

DS scheme, r value increases less strongly than for the FSL1 and

FSL2 schemes.

The proportional relation between the number of BDA-labeled

somas and the number of streamline-terminals, shown in Fig. 4D

and Table 1 row 10 is similar to the relationship between BDA-

labeled fibers and streamlines in Fig. 4A and Table 1 row 1, except

the number of false negative ROIs were more for the soma-

terminals case. The proportional relationship between BDA-

labeled soma and fibers, shown in Fig. 4E and bottom 2 rows in

Table 1, is statistically significant.

Fig. 5 shows the backbones of the BDA-labeled, DS and FSL2

derived inter-regional connectivity. There are no edges connecting

IR to iPF, cPF and cPVR shown in Fig. 5A but there are edges

between IR to those regions in Fig. 5BC, which indicates iPF, cPF

and cPVR are false positive regions detected by DS and FSL2 with

dw = 0.6 mm.

Correlation of Intra-ROI Connectivity Spatial Distribution
To visualize the spatial distribution of fibers (or somas) as well as

streamlines (or streamline-terminals) from the ROI scale down to

the voxel scale, the density distribution of BDA somas, BDA

interface-crossing fibers, DTI streamline-terminals and DTI

interface-crossing streamlines were rendered on the 3D WGM

interface in DTI space (Fig. 6). Comparison between Fig. 6B and

Fig. 6C–E indicated that distribution patterns of BDA and DTI

fibers (DS and FSL schemes) are quite different. Table 2 lists the

quantitative evaluation of the agreement: the Pearson’s correlation

coefficient, rp, of anatomical and DTI derived distributions in each

individual ROI. Overall, the significant linear correlations for all

the ROIs were lower than 0.5. The FSL2 scheme provided

stronger linear correlations than FSL1 did, but comparable

correlations to the DS scheme for most ROIs. The agreement in

iPM is higher than the other projection regions due to higher

sensitivity of DTI along this fiber pathway.

We also investigated whether deeper seed regions could help to

achieve better distribution similarity by increasing the probability

that streamlines could bypass crossing fibers directly beneath the

WGM interface. Results for dw = 0, 0.3 and 0.6 mm for each

tractography scheme are shown in rows of Table 2. For the DS

scheme, no significant trend in correlations was found as dw
increased (p.0.99 in one-way ANOVA). For the FSL1 and FSL2

schemes, correlations for ipsilateral ROIs did not have statistically

significant differences (p.0.75 and p.0.72) although they seemed

to have subtly increasing trends as dw increased. No test was

performed for contralateral ROIs, since the correlations were

weak in those cases.

Sources of Discrepancies between Histological and DTI
Connectivity

The challenges facing diffusion MRI tractography are well

known, in principle. Limitations due to image artifacts and noise

[26,44,45], partial volume averaging [46], and angular resolution

[47] have been studied both experimentally and theoretically.

Partial volume averaging was an obvious source of error in this

study, as illustrated in Figures 7 and 8. Although BDA-labeled

fibers connecting the injection region to the contralateral

hemisphere run left/right in the plane of Figure 7, the principal

diffusion direction (corresponding to most fibers in these voxels) is

oriented anterior/posterior just under the injection region (Fig. 7B)

and superior/inferior in deeper white matter (Fig. 7C). The

disagreement between the BDA fibers bound for the contralateral

hemisphere and the dominant fiber orientation prevents most DTI

streamlines from reaching the midline and the other hemisphere.

In fact, the strong anterior/posterior orientation of tensors

Table 1. Pearson correlation (r) and Spearman rank correlation (rs and (rs)10) coefficients (with corresponding p values) for
tractography-histology variables as well as histology-histology variables. Significant correlations are shown in bold.

dw=0 mm dw=0.3 mm dw=0.6 mm

r=0.75 (p,0.0005) r=0.82 (p,0.0001) r=0.86 (p,0.0001)

BDA fibers vs. DS streamlines rs = 0.30 (p,0.24) rs = 0.36 (p,0.16) rs = 0.45 (p,0.07)

(rs)10 = 0.44 (p,0.21) (rs)10 = 0.49 (p,0.15) (rs)10 =0.67 (p,0.035)

r= 0.33 (p,0.20) r=0.73 (p,0.0008) r=0.93 (p,0.0001)

BDA fibers vs. FSL1 streamlines rs = 0.23 (p,0.38) rs= 0.27 (p,0.30) rs = 0.29 (p,0.26)

(rs)10 = 0.74 (p,0.015) (rs)10 = 0.86 (p,0.0014) (rs)10 =0.89 (p,0.0006)

r= 0.41 (p,0.098) r=0.75 (p,0.0005) r=0.92 (p,0.0001)

BDA fibers vs. FSL2 streamlines rs = 0.25 (p,0.34) rs = 0.35 (p,0.17) rs = 0.36 (p,0.15)

(rs)10 = 0.61 (p,0.067) (rs)10 = 0.66 (p,0.044) (rs)10=0.66 (p,0.044)

r=0.80 (p,0.0001) r=0.81 (p,0.0001) r=0.84 (p,0.0001)

BDA soma vs. DS streamline-
ends

rs = 0.19 (p,0.47) rs = 0.23 (p,0.38) rs = 0.23 (p,0.37)

(rs)10 = 0.63 (p,0.050) (rs)10 = 0.63 (p,0.050) (rs)10 =0.69 (p,0.026)

BDA fibers vs. BDA soma r=0.97 (p,1.0e-10)

rs = 0.95 (p,4.5e-9)

doi:10.1371/journal.pone.0075065.t001
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Figure 6. Dorsal view of 3D DDMs rendered on the WGM interface. (A) shows the territories of all the ROIs and the BDA injection region
(upper-dorsal view; bottom-ventral view). (B) shows the BDA fiber DDM and (C–E) show respectively the streamline DDMs using DS, FSL1 and FSL2
tractography schemes (in rows) with different dw (in columns). (F) shows BDA soma DDM and (G) shows streamline terminal DDMs with different dw
(in columns). Note that some hot spots in (B) are obscured in this view. All data are presented in Fig. 4 and the Tables.
doi:10.1371/journal.pone.0075065.g006
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Table 2. Pearson’s correlation coefficients (with p values) of histological distributions and DTI tractography-derived distributions
for all the projection regions.

dw (mm) iAC iSMA iPM iM1 iPA iPP iPVR iS2 cAC cSMA cPM cM1 cPA cPP cPVR cS2

0 BDA-DS fibers rp 2.02 .01 .35 .22 .41 .18 2.00 .00 2.02 2.00 2.05 2.04 .22 .00 2.00 2.00

p .64 .86 .00 .00 .00 . 00 1 1 .65 1 .26 .32 .00 1 1 1

BDA-FSL1 fibers rp .00 .19 .39 .31 .12 .00 2.00 .00 .00 2.00 2.00 2.00 2.00 .00 .00 2.00

p 1 .00 .00 .00 ,00 1 1 1 1 1 1 1 1 1 1 1

BDA-FSL2 fibers rp 2.02 .24 .38 .34 .18 2.00 2.02 .00 2.01 .04 2.06 .01 .20 .00 .00 .02

p .68 .00 .00 .00 .00 .94 .80 1 .79 .45 .14 .01 .00 1 1 .72

BDA-DS somas rp .00 .07 .34 .24 .33 .37 2.00 .00 .00 2.00 .01 .07 .05 2.01 .00 .59

p 1 .11 .00 .00 .00 .00 1 1 1 1 .89 .03 .09 .85 1 .00

0.3 BDA-DS fibers rp 2.02 .02 .33 .22 .43 .18 2.02 2.04 2.02 2.04 2.04 2.07 .23 2.00 2.00 2.01

p .64 .67 .00 .00 .00 .00 .77 .35 .66 .44 .29 .04 .00 .94 1 .80

BDA-FSL1 fibers rp .00 .20 .43 .40 .15 .08 2.00 .00 2.01 2.00 2.00 2.00 2.00 .00 .00 2.00

p 1 .00 .00 .00 .00 .19 1 1 .87 1 1 1 1 1 1 1

BDA-FSL2 fibers rp 2.03 .26 .43 .45 .20 .19 2.03 .00 2.01 .11 2.06 .04 .26 .00 .00 2.03

p .58 .00 .00 .00 .00 .01 .67 1 .84 .02 .14 .28 .00 1 1 .55

BDA-DS somas rp .00 .10 .34 .24 .31 .24 2.00 2.00 .00 2.02 2.00 .03 .10 2.01 .00 .41

p 1 .04 .00 .00 .00 .00 1 1 1 .66 .95 .35 .00 .82 1 .00

0.6 BDA-DS fibers rp .09 .02 .36 .26 .41 .13 2.04 2.03 2.02 2.03 2.05 2.07 .23 2.01 2.00 2.02

p .05 .69 .00 .00 .00 .04 .57 .56 .65 .47 .26 .04 .00 .91 1 .62

BDA-FSL1 fibers rp .00 .22 .43 .44 .20 . 16 2.01 .00 2.01 2.00 2.00 2.00 2.00 .00 .00 2.00

p 1 .00 .00 .00 .00 .01 .88 1 .87 1 1 1 1 1 1 1

BDA-FSL2 fibers rp .01 .27 .45 .48 .21 .22 2.04 .00 2.01 .10 2.06 .05 .26 .00 .00 2.02

p .83 .00 .00 .00 .00 .00 .57 1 .80 .03 .14 .13 .00 1 1 .60

BDA-DS somas rp .00 .08 .41 .29 .30 .32 2.00 2.00 .00 2.02 2.01 .05 .11 2.02 .00 .16

p 1 .09 .00 .00 .00 .00 1 1 1 .61 .86 .15 .00 .74 1 .00

Significant correlations are shown in bold, and correlation results for labeled somas are shown in italics.
doi:10.1371/journal.pone.0075065.t002

Figure 7. Three dimensional diffusion isosurfaces overlaid on BDA-labeled fibers in crossing fiber regions. Background of (A) is the
high resolution BDA micrograph (46) of the white matter under the injection/seed region. Diffusion isosurfaces calculated from the tensors are color-
coded according to anatomical orientation and scaled in size by the local FA. (B) and (C) show details immediately under the injection region (IR) and
in deeper white matter, respectively.
doi:10.1371/journal.pone.0075065.g007
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immediately under the injection region is partially responsible for

the strong (false positive) connectivity to the ipsilateral prefrontal

cortex (Fig. 6) measured with both the DS and FSL2 schemes.

Probabilistic tracking methods based on the multi-tensor model

are predicted to be better able to resolve crossing fibers, but the

histology vs. FSL fiber correlations (Table 2) are not significantly

higher than the histology vs. DS fiber correlations in this study.

Figure 8AB shows that FSL2 is also limited by partial volume

averaging in this data set. The FSL2 streamlines do not reach the

WGM interface under the contralateral PM cortex. Figure 8C

displays the two fiber orientations estimated by the FSL2 scheme

in each white matter voxel immediately underneath the contra-

lateral PM cortex. The vast majority of axons in these voxels travel

parallel to the WGM interface and strongly bias the FSL-estimated

fiber orientations also to be nearly parallel to the WGM interface.

All six FSL cases (two ARD values, three seed region depths) were

subject to similar limitations (although it is possible that the

estimated orientations could be more accurate at higher SNR

and/or b-value [48]). In summary, partial volume averaging of

diffusion tensor data is likely a major source of error in our cortical

connectivity measurements for both deterministic and probabilistic

tracking algorithms.

Discussion

In this study, we evaluated the correlation of histology- and

tractography-derived connectivity between M1 and 17 other

cortical regions. In each case, histology and tractography density

maps were compared both between (Fig. 4 and 5) and within

(Table 2, Fig. 6) regions. To the best of our knowledge, this is the

first work to make direct comparisons of cortico-cortical connec-

tivity derived from histology and DTI tractography.

Our results show that DTI tractography was capable of

detecting all the cortical regions anatomically connected to M1

(as in the DS scheme with dw = 0.6 mm), but also produced false

positive connections to other regions (all schemes). In addition, the

correlation of inter- and intra-ROI connection strengths indicates

that the tractography schemes we used do not have uniform

sensitivity to anatomical connections either across all ROIs or

within a single ROI. Statistical analysis of Table 1 and visual

inspection of Figure 4 support the conclusion that DTI tracto-

graphy reliably identifies the regions with highest connectivity to

M1. The Pearson correlation r (p,0.0001) was highly significant

for all schemes with dw = 0.6 mm in Table 1, however this measure

emphasizes the strongest connections. When regions with weaker

M1 connectivity are included in the Spearman correlation test,

DTI tractography is not able to determine the rank order reliably

(non-significant Spearman rs for all schemes and seed depths).

When the test is repeated with only the 10 regions most strongly

connected to M1 included, the Spearman (rs)10 is highly significant.

Hence, DTI tractography was not reliable in ranking the regions

with weaker connectivity (i.e., number of BDA-labeled fibers

smaller than 100).

The two tractography algorithms used in the study were not

compared in a rigorously equivalent manner. For example, the

seed volume for DTIStudio was the entire brain whereas FSL was

seeded only in the injection region. These seeding strategies were

chosen to match the way the algorithms are generally used, in

practice. Our aim was less to make a head-to-head comparison of

the two methods and more to assess the accuracy of DTI

tractography as usually practiced.

The proportional relationship between the BDA-labeled somas

and BDA-labeled fibers across all the ROIs was significant in our

study, due to the reciprocal nature of motor cortex cortical

connections (i.e., the comparable number of afferent and efferent

nerve fibers for M1). However, other networks may not have

reciprocal connections, and therefore the utility of BDA-labeled

somas in validation studies is probably limited.

The tracer BDA was used in this study because it is transported

in both anterograde and retrograde directions along axons leading

to/from the injection site, which is analogous to the propagation of

DTI streamlines from a seed region. Moreover, since BDA (in

contrast to WGA-HRP [49]) does not diffuse much in brain tissue,

the injected tracer was confined to the forearm M1 representation

area. Most importantly, BDA provides highly sensitive and

exquisitely detailed Golgi-like labeling of somas, axons and

terminals [36], which better facilitates quantitative analysis of

individual fibers than WGA-HRP and Mn2+ do. Although Mn2+ is

an attractive tracer for validation studies because it is directly

visible on MR [30], the specificity of Mn2+ for fiber pathways is

limited, especially for our purpose of quantitative comparison

based on counting individual axons.

We found approximately 75–98% of streamlines reached true

positive ROIs for our predefined regions (section 3.4). These

Figure 8. FSL2 outputs overlaid on a FA map. (A) Coronal slice showing the FSL2 density map (dw=0.6 mm) superimposed on a grayscale FA
map. The white curve labels the WGM interface. (B) and (C) show an enlarged region in the superior part of contralateral hemisphere. Blue and red
lines in (C) represent dominant fiber orientations, estimated by the FSL bedpost tool.
doi:10.1371/journal.pone.0075065.g008
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percentages represent the sensitivities of the nine tracking

strategies (DS, FSL1 and FSL2 schemes using dw = 0, 0.3 and

0.6 mm), which are comparable to the 80% sensitivity measured

by Seehaus et al [50] in post mortem human temporal lobe. The

pathways measured in that paper were seeded in white matter

voxels and terminated in cortical injection site(s), whereas our

experiment aimed to assess corticocortical connectivity, which

means valid fibers were required to touch both injection and target

cortical regions.

There are several limitations to the study. First, only connec-

tions to the forearm region of M1 were quantified–measurements

of the accuracy of DTI connectivity to this region may not

generalize to other areas in M1 or to other cortical networks.

Second, BDA was injected at approximately 1 mm intervals

covering the forearm region (Fig. 1). This interval was chosen

because the tracer spreads in the tissue about 0.5 mm from the

needle location and the goal was to tag all axons in the region.

However, it is possible that uptake of the tracer was not uniform

over the forearm area while the distribution of tractography seed

points was uniform. Hence, it is possible that the BDA and seed

point distributions were not identical in the injection region, which

could bias the results toward those locations within the region

where BDA uptake was higher. In addition, in the radial direction,

the BDA injection was not strictly confined to gray matter, but

extended slightly into the white matter immediately beneath the

cortex, which means that fibers of passage underneath the injected

cortex may have taken up BDA as well. Thus we used seed regions

that extended one or two voxels (dw = 0.3 and 0.6 mm) into the

subcortical white matter to match the injection. Third, imperfect

micrograph-to-DTI spatial registration may introduce bias in

DDMs. Although the overall error in our registration procedure

was likely on the order of 1 voxel ( = 0.3 mm) [39], the local error

close to the GWM-interface was more difficult to control and

estimate because there were fewer apparent features to be

captured as landmarks. Fourth, the MRI acquisition had limited

SNR (,30) and number of diffusion directions (n = 31), which

likely affected sensitivity to small fiber components. However,

these are typical parameters for many DTI experiments, including

in vivo human studies. Finally, this study used two approaches to

tractography (deterministic and probabilistic), implemented in two

of the most commonly used analysis packages (DTIStudio and

FSL). However, the results may not apply to other algorithms. The

framework for comparison to histology used in this study could be

applied to other algorithms.

Probabilistic tractography schemes were expected to provide

stronger correlations than deterministic tractography schemes due

to higher sensitivity to non-dominant pathways. However, our

results show no significant difference in correlations between these

methods. This might be due to the limitations of our DWI

acquisition, since 32 diffusion directions only allow FSL to resolve

crossing angles more than 60̊ within a voxel [48]. Additionally,

due to partial volume averaging, the termination mask used in FSL

tended to stop some streamlines which otherwise would travel

along the gray matter interface and then stop at locations father

away from seed mask. This phenomenon is shown as a ‘hot color’

ring surrounding the injection region in Fig. 6E.

The results of this study show that connectivity measured by

DTI tractography is strongly correlated with anatomical connec-

tivity when measured on the scale of major cortical regions (Fig. 4).

At a finer scale (i.e., within regions), the DTI DDMs are somewhat

less reliable (Table 2). This implies that as cortical parcels are

subdivided to achieve higher resolution in connectivity maps, the

reliability of those maps may decrease dramatically, due to

inaccuracies in streamline terminal location. Our results suggest

that interference from strongly anisotropic bundles that cross

pathways of interest tends to bias DTI connectivity measurements.

Such bias would likely be consistent across repeated scans and

across individuals, if the fiber geometry was consistent. Hence,

reproducibility of DTI connectivity measurements is not, in and of

itself, an indication of reliability. More accurate connectivity

measurements will rely on detection of fibers that comprise a small

minority of the total fiber population within a voxel. This may be

possible with High Angular Resolution Diffusion Imaging

(HARDI) methods, although the sensitivity of HARDI to small

fiber populations has not been studied extensively. Improvements

in modeling fiber orientation distributions and tracking fibers of

interest through ambiguous crossing regions will be critical to

increasing the accuracy of diffusion MRI measurements of cortical

connectivity.

Finally, the squirrel monkey replicates much of the macroscopic

structure of the human nervous system, yet it is possible that the

human brain has more complex microstructure. Thus some

caution is advised extrapolating our results to DTI measurements

in the human brain.

Conclusions

DTI tractography is capable of detecting true connectivity for

most or all cortical regions with anatomical connections to M1 in

the squirrel monkey, but may also produce false positive

connections. Deterministic tractography can provide inter-region-

al connectivity measures as accurate as probabilistic tractography

under some situations. DTI tractography is not uniformly sensitive

to connection strength either across or within connecting regions.

A major source of discrepancy between histological and tracto-

graphy-based connectivity is the presence of crossing fibers, which

may prevent streamlines from reaching the correct bundle from

the cortical seed region or prevent them from leaving a strongly

anisotropic white matter bundle to find the correct cortical

terminals.
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